Groupement De Recherche du CNRS


Nos tutelles

CNRS

Rechercher




Accueil > Présentation

Présentation du GDR

par Stéphane Druel - publié le , mis à jour le

Le GDR GAGC a pour but de fédérer les chercheurs qui travaillent en France dans les domaines de la géométrie algébrique ou de la géométrie complexe. Il a été renouvelé le 1er janvier 2020 pour une durée de 5 ans.

Il se donne pour mission de développer la communication et le dynamisme au sein de cette communauté. Son action sera tournée en priorité vers ses membres les plus jeunes.

Le GDR souhaite en particulier faciliter l’insertion des doctorantes et des doctorants dans le tissu de la discipline, que ce soit par sa rencontre biennale ou par les Journées du GDR, lieux d’échanges privilégiés.

Le comité de pilotage, par les choix qu’il affichera en particulier à travers les orateurs de la conférence biennale, fera profiter la communauté de sa réflexion sur les thèmes qui lui semblent les plus prometteurs - réflexion dont l’effet d’entraînement pourrait être important pour nos jeunes chercheurs.

Enfin, le GDR souhaite favoriser les interactions avec d’autres groupes de recherche dans des domaines liés, l’interface entre nos thématiques ne cessant de s’enrichir.

Périmètre scientifique

Les dernières années ont été marquées par d’importants progrès en géométrie algébrique complexe. Le GDR souhaite infléchir ses thématiques en accompagnant les développements récents les plus spectaculaires de la discipline.

Citons quelques thématiques en développement.

Le programme de Mori, ses analogues en géométrie kählérienne, en caractéristique positive, ou en théorie des feuilletages holomorphes sont des sujets particulièrement actifs. Le GDR a contribué à développer la géométrie birationnelle en France et nous souhaitons continuer sa diffusion.

L’étude des variétés spéciales est en pleine effervescence, notamment la géométrie des variétés rationnellement connexes, et en particulier le problème de la rationalité de ces variétés. L’étude des variétés symplectiques holomorphes (cycles algébriques, espaces de modules, fibrations lagrangiennes) est une thématique traditionnellement représentée au sein du GDR. La géométrie des espaces (peu) singuliers de dimension de Kodaira zéro et ses analogues feuilletés ou encore l’hyperbolicité des variétés (conjectures de Green-Griffiths et Lang en particulier) sont également des directions de recherche où les avancées sont importantes.

Parmi les thèmes particulièrement actifs, on peut aussi mentionner les questions autour des espaces de modules de variétés de dimension supérieure, et notamment leurs compactifications (ainsi que leurs analogues en caractéristique positive), leur géométrie birationnelle, etc.

Enfin, tout un ensemble de problèmes pour lesquels les méthodes analytiques se sont montrées très efficaces, que ce soit en géométrie birationnelle (approche du programme de Mori via le flot de Ricci), sur des questions relatives aux métriques de Kähler-Einstein sur les variétés singulières, et notamment leur comportement au voisinage des singularités ou sur les problèmes d’hyperbolicité. Sur toutes ces questions l’expertise du GDR est très forte et devrait être encore développée.

Parallèlement, le GDR souhaite soutenir les interactions qui ont émergé récemment avec des disciplines proches, notamment la géométrie analytique non archimédienne, la topologie algébrique pour l’utilisation des méthodes homologiques en géométrie algébrique (catégories dérivées de faisceaux cohérents sur les variétés algébriques, géométrie algébrique dérivée), ou qui n’ont fait que s’amplifier, comme la dynamique holomorphe pour l’étude des transformations birationnelles ou des endomorphismes de certaines variétés, ou encore l’arithmétique pour ce qui concerne aussi bien l’hyperbolicité que la géométrie d’Arakelov ou la théorie des feuilletages. Nous souhaitons également renforcer les interactions avec les spécialistes de théorie des représentations pour l’étude des groupes algébriques de transformations et plus généralement, toutes les questions à l’interface entre théorie des représentations et géométrie.

Le GDR veut permettre à ses membres de profiter au mieux de cette dynamique scientifique, tout en continuant à soutenir les thématiques traditionnellement les mieux représentées en son sein.

Genèse du GDR

Le GDR Géométrie algébrique et Géométrie Complexe (GDR GAGC) a été créé le 1er janvier 2007 et dirigé par Olivier Debarre, puis renouvelé le 1er janvier 2011 pour une durée de quatre ans, avec Laurent Manivel pour directeur. Il s’inscrit dans le prolongement du GDR Géométrie Algébrique Complexe (GDR GAC), administré par Arnaud Beauville, qui s’est terminé le 31 décembre 2005. Le GDR GAC était le nœud français du réseau européen de géométrie algébrique EAGER. Le GDR GAGC a été administré par Christophe Mourougane jusqu’en décembre 2019.